
Description of Test Test case Excepted Result

testResetBoardPits:
Resets the board to
ensure the correct
number of stones in
each pit initially.

board.resetBoard(); Stones = 4

testResetBoardStore
s:
Resets the board to
ensure the correct
number of stones in
each store initially.

board.resetBoard(); Stones = 0

testRegisterPlayerOn
e:
Registers players to
respective stores.

board.registerPlayers
(playerOne,
playerTwo);

Store 1 owner =
playerOne, and
playerOne store =
store 1

testRegisterPlayerTw
o:
Registers players to
respective stores.

board.registerPlayers
(playerOne,
playerTwo);

Store 2 owner =
playerTwo, and
playerTwo store =
store 2

testGetNumStones:
When a valid pit
number is input, get
the number of stones
in that pit (On the
assumption no
moves made).

pitNum = 1 Number of stones = 4

testGetNumStonesEx
ception:
When a invalid pit
number is input,
throw
PitNotFoundExceptio
n.

pitNum = 13 “13 should be out of
bounds”

testGetNumStonesE
mpty:
When a valid pit
number is input, and
the pit is empty, get
the number of stones
in that pit.

After removing pits
for pit 2

Stones = 0

testGetNumStonesM After moving stones Stones = 5



ove: When a valid pit
number is input,
distribute stones from
that pit (assuming
this is the first move
made on that pit),
and get the number
of stones in the next
pit.

from pit 3, get
number of stones in
pit 4

testDistributeStones:
When a valid pit
number is input,
distribute stones from
that pit.

After distributing
stones at starting
point 4, get the total
numbers distributed
in stores and pits.

Stones = 4 (on the
assumption the game
just began)

testDistributeStonesE
xception:
When an invalid pit
number is input,
throw
PitNotFoundExceptio
n.

pitNum = -2 “-2 should be out of
bounds”

testDistributeStonesL
owBoundary:
When 0 (low
boundary case) is
pitNumber, throw
PitNotFoundExceptio
n.

pitNum = 0 “0 should be out of
bounds”

testDistributeStonesH
ighBoundary:
When 13 (high
boundary case) is
pitNumber throws
PitNotFoundExceptio
n.

pitNum = 13 “13 should be out of
bounds”

testCaptureStones:
When a valid pit
number is input,
return the number of
stones captured from
the opponent side (on
the assumption this is
the first move).

stoppingPoint = 1 Captured = 4

testCaptureStonesEx stoppingPoint = 52 “52 should be out of



ception:
When an invalid pit,
throw
PitNotFoundExceptio
n

bounds”

testCaptureStonesLo
wBoundary:
When 0 (low
boundary case) is
stoppingPoint, throw
PitNotFoundExceptio
n.

stoppingPoint = 0 “0 should be out of
bounds”

testCaptureStonesHi
ghBoundary:
When 13 (high
boundary case) is
stoppingPoint, throw
PitNotFoundExceptio
n.

stoppingPoint = 13 “13 should be out of
bounds”

testCaptureStonesAc
tion:
When valid input is
entered, get the
number of captured
stones after a variety
of moves.

startPit = 3 (p1)
startPit = 4 (p1)
startPit = 8 (p2)
startPit = 5 (p1)
startPit = 9 (p2)
startPit = 2 (p1)
startPit = 8 (p2)

Stones captures = 1

testIsSideOneEmpty:
Before any moves
are made, check to
ensure playerOne’s
side is full.

pitNum = 1 isSideEmpty returns
false

testIsSideTwoEmpty:
Before any moves
are made, check to
ensure playerTwo’s
side is full.

pitNum = 7 isSideEmpty returns
false

testIsSideFull:
After removing every
stone from every pit
on playerOne’s side,
ensure playerOne’s
side is empty.

*remove stones from
pits 1-6
pitNum = 1

isSideEmpty returns
true

testIsSideEmptyExce pitNum = 0 “0 should be out of



ption:
When invalid input is
entered, throw
PitNotFoundExceptio
n

bounds”


